Mu.H’.varfﬂHe Calewlus
We begin to look at a three dimensional

coordinate system with axes x y and z.

Review : Derivatives and Integrals... FTC
Derivatives totes talk about rate of change at a
point instaneously. An integral describes area
between a given function on an interval.

In 3d space, we use the coordinate system x,y,z
with cooridinates (a,b,c) to uniquely represent a
point in space. We divide this plane into
Octants. There are 8 octants in this coordinate
system. =

The horizontal should be X. » 57
The other horizontal should be Y. y
Right hand rule, the verical axis should be Z.

Talking about projections of planes from the 3d
plane.

In R2, a value for one variable is a line, but In

R3 a value for one variable represents a plane.
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Equation of a Sphere An equation of a sphere with center C(h, &, [) and radius r is

(I—f1}1+{}’—k}2+(3—f)1=!‘2 .....

In particular, if the center is the origin O, then an equation of the sphereis
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lol|bl cos© =ab

(ng&)*— (C’lyb)/) + (G-Z bz )= Q’b Scalar projection of b onto a: comp, b = a-b

al
CosE = b
i - b . |
i:ll l-bl e {'.0 (]ﬂ”bl) Vector projection of b onto a: proj, b = (E_l“.) 8 - _'El_tla

a| /|a] |af
Properties of the Dot Product If a, b, and ¢ are vectors in V; and c 1s a scalar, then

1. a-a=|al’ 2a*b=>hb-a
3 a(b+c)=a-b+a-c 4. (ca)*b=c(a*b)=a"(ch)
5. 0-a=0 6&&-\@ Gb{‘l‘

2 Chpth Prodit

Definition If a and b are nonzero three-dimensional vectors, the cross product of
a and b is the vector

axXb=/(|a||b|sinf)n

where @ is the angle betweena and b, 0 = # = 7. and n is a unit vector perpendi-
cular to both a and b and whose direction is given by the right-hand rule: If the
fingers of your right hand curl through the angle 6 from a to b, then your thumb
points in the direction of n. (See Figure 3.)

The vector product is NOT commutative, ix j=kbut jxi=k

Properties of the Cross Product If a, b, and ¢ are vectors and c is a scalar, then
.axXb=-bXa

2. (ca) X b=-c(aXb)=a X (ch) SCH-IE ou-t
2 aX(bt+te)=aXb+aXce

4. (a+b)Xe=aXc+bXc fﬂr

|
The length of the cross product a > b is equal to the area of the parallelogram | |b|sin

determined by a and b. /6

|,_| e
I
|



2| Ifa= (ay,,a, ay) and b = (b, by, b3), then K 3 e

aXxXb= (Hgb_} = EI:,b H3b1 — da b"-l, cl bg T ﬂgbl}

C=0, 4ty
FIGURE 1
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Kl n.-(7-2)-0
0.L-x,) *btg—yﬂ) +c(2-2,)=0

x— X=X «T{ fa = L2 hm"ﬁf
} In general, the equation for
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R=(357 : .
3 points determine a plane,
2(x-1) 4 6({;-3){7 (2-9): 0

Create 2 vectors from three points with their differences. Cross the
two vectors to create a third orthogonal vector that describes the

plane
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v X=145¢ 4=-1-3¢ z=44t (dhe BmmotrictleiSd)
Axeslabd = true

Definition A function f of two variables is a rule that assigns to each ordered pair
of real numbers (x, y) maset Da umqua real number denoted by fl(x, y). The set
D 1s the domain of [ and its range is the set of values that f takes on, that 1s,
{f(x,y) | (x,y) € D}.

Definition lf [ 1s a function of two variables with domain D, then the graph of f
1s the set of all points (x, y, z) in R* such that z = f(x, y) and (x, y) 1s in D.

Conie. Settions HE?(P& ~ bela

!, £ '
el PS& A 7= = | (52 (5 3))
& b\ i 28
x> +y® _1 '
a3 b T
o




F&CQCAL{"‘{{, 1 :d_'r

r(t + h) — r(r)

h—=0

(+)= <\°(Jc 3( T k{-)} —-=r'() = lim

rit+ h)—rit)

EEEREEDTREERES R s IR 1S | (b) The tangent vector

h are differentiable functions, then

r'(t) = (f(1),9'(0),h'(1) =f()i+ g'(t) ]

+ h'(t) k

2| Theorem If r(r) = { f(2), g(1), h(t)) = f(0)i + g(r)j + h(t) k, where f, g, and

and f is a real-valued function. Then
a,i [u(r) + v()] = u'(z) + v'(2)
d
2. — [cu(r)] = cu'()
3. E[ f(Hu()] = f'(Dua(r) + f(Hu'(s)
. % () - v(@)] = o) « v() + ul) < vi()

5. %[u{r} X v(t)] = u'(s) X vl(r) + ulr) X v'(z)

6. < [u(F0)] = FOW(FD)  (Chain R

3 | Theorem Suppose u and v are differentiable vector functions, ¢ is a scalar,
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8 | Definition The curvature of a curve is

_ 1T®)] B
|l"'[f]| N =

where T is the unit tangent vector.

| ") |
[1 + (F DT~

k(1)

k(x) =

ds

___1_61 Theorem The curvature of the curve given by the vector function r is

|r'(r) X r"(1) |

H'{-r} = |rr“] |3
__rw T -
e L] AT @ _ [l > E48)
ds | |r@] ()|
L T We can think of the normal vector as indicating H(/)

the direction in which the curve is turning at
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Unit tangent vectors at equally spaced




EI.
=

3x* + 3y’y = 6xy’ + 6y
' +yty =2y’ + 2y

Yy —2xy =2y —x"

A7 (y* = 2x)y' =2y — x?
Y e -

y' = —
' Yol

Rule for Finding Partial Derivatives of z = fix, y)
1. To find f., regard y as a constant and differentiate f(x, yv) with respect to x.

2. To find f,, regard x as a constant and differentiate f(x, v) with respect to v.

J] EXAMPLE 4 Implicit partial differentiation Find dz/dx and dz/dy if z is defined
implicitly as a function of x and y by the equation

2+y 4+ 2+ bxyz=1
SOLUTION To find dz/dx, we differentiate implicitly with respect to x, being careful to
treat y as a constant:

. . 02 az
3xt 4+ 3z" = byz + 6xy— =1
dx X

Solving this equation for dz/dx, we obtain

dz x* + 2yz

dx z* + 2xy

Similarly, implicit differentiation with respect to y gives




FIGURE 1

2| Suppose f has continuous partial derivatives. An equation of the tangent
plane to the surface z = f(x, y) at the point P(xg, yo, 2) is

Z— 2y =_,ﬂ{1‘u, _'b’{n}[l' =iz} o _f;.-[-‘-‘nm _\’u][}‘ - _\’u:'

{a) (b} (ch

FIGURE 2 The elliptic paraboloid z = 2x* + y* appears to coincide with its tangent plane as we zoom in toward (1.1, 3).

[l ©xAmPFLE? Using 3 Mnearization o estimaie 8 fasction value
Shawa that fix, v) = ™ is differentiable s {1, 0} and find its lmeanzstion there. Then
s 1k I:oap-pm:timal.c ALY, —Ib

SOLUTION The partisl denvatives ane
fubx, ¥) = + ™ M, y) = I.M.r"

fiLm =1 Sl =1

Both f and [ are comtinuous functions, so | s differentiable by Theorem & The lin-
EOrIZELEON IS

e, vl o= FT1, 00 + S0, 000 — 10 + £00, 0y — 0)
=0+ lix—M)+1-v=x+y

The corresponding lmear approximation 1=

xe' gy

=0 JULL, =0E) == LK = 00 =1

Compare this with the actonl volue of (1.0, =001} = Ll1e ®" = 0DOE542 ==

The tangent plane contains the
tangent lines T, and T..
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Z | 3| The Chain Rule (Case 2) Suppose that = = f(x, v) is a differentiable function of
x and y, where x = gls, t) and v = h(s, t) are differentiable functions of s and .
gz diodr . or oy dz Oz ox oz oY

. /N A= Then
X ;x' b

/ \ s ax ds Ay as ar ax ar ay M

ﬂv

L2= gz(j.\/) e.slny
Az X: 84" Y= i

T = (ing) 258+ (eony) ()

4 | The Chain Rule (General Version) Suppose that u 1s a differentiable function of

the n variables x,, x1, ..., x, and each x; is a differentiable function of the m vari-
ables t;, 1., ..., t,. Then u 1s a function of t,, 15, ..., t,, and
i
i du dx; du  dx; du  dx,
- - - + - - -I_ tT +
ot dx, df; dx, dt, dx, ot

foreachi= 1,2,..., . Hw 1‘15: 1"1"3*&5"?; g, W13, H,l-ﬂi"‘/ * / H“ / H / ‘-.,1

;W“ v ou v u v ou
;(Kyz )( 1 | B 3 N gE
&04- y Veab JEINY Ny Ju | du

=/ TN z
mw{ X= r“.ﬁe. Y- rSe. 2= r"'&(ﬁln )y_ a ;‘f 2 | ;zﬁ |
du _ du Ix. Eiu chf 3u 3= N Gt
_,Jr' | .3}-{ dc | c:'-y ér d; dr B /
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O L wmirnli absolute
A Maximum

local
maximuim

absolute
minimum

minimum

| 1| Definition A function of two variables has a local maximum at (a, b) if
f(x,v) = fla, b) when (x, ) is near (a, b). [This means that f(x, v) < f(a, b) for
all points (x, y) in some disk with center (a. b).] The number f(a, b) is called a
local maximum value. If f(x, v) = f(a, b) when (x, v) is near (a, b), then f has a
local minimum at (a. b) and f(a, b) is a local minimum value.

fE Fermat’s Theorem for Functions of Two Variables If fhas a local maximum or

L

minimum at (a, b) and the first-order partial derivatives of f exist there, then

!
CL. [1 fila, b) = 0 and f,(a. b) = 0.
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27-32 Find the absolute maximum and minimum values of f on

the set D. in 3d, restric:
=8 6'7{-'1'1'“&%2- VHIME, [LEﬂFEﬂ 'k: hou.ﬁclﬂf.ll : B
21. f(x,y) =1+ 4x — 3y, D is the closed lndnguidr I‘Eblﬂa

with vertices (0, 0), (2, 0), and (0, 3)

i} Sets that ane not closed

ﬂ Extreme Value Theorem for Functions of Two Variables If f is continuous on a
closed, bounded set D in R°, then f attains an absolute maximum value f(x,, y;)
and an absolute minimum value f(x,, y,) at some points (x,, y;) and (x,, y;) in D.

43. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one

vertex in the plane x + 2y + 3z = 6.
Mosimeze | Volume \fﬂ:{y?_ Mbaact s 4. V(x,y)f* x?/{G—J:y— x’)
ol <2y 3276, 2= G-y~ 1
Xtdy 5276, == ©-Ay~x Take parkAls

3 Set to zefv ¢ solve
P'.u. 'Jﬂ*\llﬁ-ﬁ llr'(:"l'«»“v.(; g.g_-\'ruﬂ
44. Find the dimensions of the rectangular box w1th&ﬂrgest X

volume if the total surface area is given as 64 cm”. V(% y) ﬂy(i?'_,ﬁ
Vzxyz Gédaﬁﬁgxyi—gﬂzﬂlfz 61 \/ ()(iji‘zgé
Z= C1-qxy _ 32-x4 :J (
SEERTER : gy-r‘;[x y + X y i

e el 0 e % r i o . =y
! LA T i b ]! 105
_,—,.-r —rer=a i

L SR R

Mﬁ'l'r 18
;LW{Y'Z.‘-) k f-l;rml::“e‘ Eur-ﬁc.q,&{) L LAl ?-) Bwiﬁ o mQuLLAUN ﬂﬂdb

conbidor. T(L)=<xl) o (4) 2 (4 )W

w (K..y.,Z) 18 ATV i 38
Thon dc dx do AY dc 9z _
Method of Lagrange Multipliers To find the maximum and minimum values of 3?\ d't 5 EH:. AZ, Cl":

Fix, ¥, z) subject to the constraint gix, v, 2} = k [assuming that these extreme val
ues exist and Vg # 0 on the surface glx, v, z) = k] F ) e (+)
T . T L T o= =i I L -
{a} Find all values ol x, v, z, and & such that v Lx ﬁly. ;Z, r-.. - D

Vilx v.2) = AVglx, v. 2)

e e e EE—— e gme—— e e e pr e e e P ESNS S

and glx, v, z) = k

(b} Evaluate [ at all the points (x, v, ) that resull from step (a). The largest of
these values is the maximum value of [ the smallest is the minimum value
of f.



.3 Lmarnnga Mudkplers HQ: 3.5,7.8,11,12,15, 21
M. f(x,y,2)=x>+y*+2z% x*+y*+z4=1

V;: AV G — Vf={ax. .2 220} v& Qix "f/3 42%)
2= A48, dy= My, ;2 2923

(S 9@& A=l
XA

21. Consider the problem of minimizing the function f(x, y) = x

on the curve y* + x* — x* = 0 (a piriform).

(a) Try using Lagrange multipliers to solve the problem.

(b) Show that the minimum value is f(0, 0) = O but the
Lagrange condition Vf(0, 0) = AVg(0, 0) is not satisfied
for any value of A.

(c) Explain why Lagrange multipliers fail to find the mini-
mum value in this case.

0) U5= (1,05 ; 7= (4x-3¢, 2y )

vsf ?‘? B 33::.2) O= Ay @, 0%y
10, y=0° 0= Kix-1)
=15 Az]



FIGURE 4 FIGURE 5
2.\ 34910112 5] Definition The double integral of f over the rectangle R is
13.2 35,¢,9.10,31117.21 fi ftxyraa= tim_ 3 3 fia. o) a4
%, 2. &5 if this limit exists.

(3| If f is continuous on a type I region D such that

D={(x,y) | a=x=b, g(x) =y = gs(x)}

Arer of Moo | " Jf ey da=[7[77 ) dy s

Q rJ=J.'I+1;: x=rcosf ¥y = rsin #
© (1r . .
| —

2| 2| Change to Polar Coordinates in a Double Integral If f is continuous on a polar
= [ rectangle RgivenbyO0=aga=r=b,a= 0= B, where) = 8 — a = 27, then

_[I.f{-t, y) dA = E ff[r cos @, rsin 0) r dr do

R

The formula in (2) says that we convert from rectangular to polar coordinates in a
double integral by writing x = rcos # and y = rsin 6, using the appropriate limits of inte-

E gration for r and @, and replacing dA by r dr d6. Be careful not to forget the additional
factor r on the right side of Formula 2. A classical method for remembering this is shown
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2.3 ‘
15) 6 Set up iterated integrals for both orders of integration.
Then evaluate the double integral using the easier order and
explain why it’s easier. Y=%-2,y=1ix

A= ?H-;,'l K= »;:l

=

15. H ydA, Disboundedbyy=x— 2, x =y

D

Use a computer algebra system to find the exact volume

of the sohd.

39. Under the surface z = x’y* + xy” and above the region
bounded by the curves y =x" —xandy=x" + xforx =0
40. Between T.]'Il._- par: lhn;*.ulmih z=2x"+ y“and
z=18 — x* = 2y? tmd inside T.hL L;.*ltLLlLI x4+ yi=1
" : R : ume. _loe
12. ||, ve' dA, where R 15 the region in the first quadrant enclosed _ \'{ﬂ
by the circle x* + y* = 25 ,‘T\‘:r Z % ?‘- ;‘YJ

T B@-2 dyd

- \fﬂlume be,lmﬁ
Tri Z= 3)‘21'?; 5

|- g2
’m A x* *72c}yﬂl>(






